EFFECT OF AQUEOUS LEAF EXTRACT OF EUPHORBIA HETEROPHYLLA ON KIDNEY, LIVER AND PANCREATIC FUNCTIONS AND PLASMA ELECTROLYTES IN RABBITS

Okolie Ngozi Paulinus*, Falodun Abiodun2, Agu Kinsley3, Egbe Justine Uchechuku4, Ajayi Keyinde4, Madu Kelechi1 and Ejiayeshina Joseph1

1Department of Biochemistry, Faculty of Life Sciences, University of Benin, Benin City, Nigeria
2Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Benin City, Nigeria
3Department of Medical Biochemistry, Faculty of Basic Medical Sciences, University of Benin, Benin City, Nigeria
*Corresponding Author Email: ajino@uniben.edu

DOI: 10.7897/2277-4572.04227

Received on: 18/02/15 Revised on: 18/03/15 Accepted on: 14/04/15

ABSTRACT

Although the use of Euphorbia heterophylla as herbal laxative in Nigeria is associated with severe and sometimes life-threatening side effects, not much is known about the toxic effect of the herb. This study was designed to assess the effect of aqueous leaf extract of the plant on some vital organ functions in rabbits. Three groups of rabbits (six rabbits/groups) were used. Two groups received either 10 mg or 20 mg of aqueous extract/kg body weight for 18 days via oro-gastric route. Members of the third group received saline and served as controls. On the 18th day, the rabbits were sacrificed following an overnight fast and blood samples were collected via the ear veins in heparinised bottles for plasma preparation. The kidney, liver and pancreas were quickly dissected out and weighed portions were used in preparation of tissue homogenates for biochemical analysis. Using standard procedures, alkaline phosphatase (ALP), aspartate transaminase (AST) gamma glutamyl transferase (GGT), alanine transaminase (ALT), electrolytes (Na+, K+ and Cl–), blood urea nitrogen (BUN), creatinine, total proteins and albumin were assayed either in tissues or in plasma or both. The results obtained showed that the extract significantly and dose-dependently decreased plasma Na+, urea and creatinine, while plasma Cl– and K+ were significantly elevated relative to control (P < 0.05). The extract also significantly increased fasting blood glucose and plasma amylose (P < 0.05). On the other hand, pancreatic protein and pancreatic amylase were significantly decreased. The plasma levels of GGT, AST and ALP were significantly higher in the extract-treated rabbits, while the activities of the enzymes were significantly decreased in the liver (P < 0.05). ALT did not follow a definite pattern, initially significantly decreasing in plasma and then increasing at the higher extract dose, while the activity of the enzyme significantly increased dose-dependently in the liver (P < 0.05). The extract significantly decreased liver and kidney total protein as well as plasma total protein and plasma albumin (P < 0.05). These results suggest that E. heterophylla may have toxic effects on vital organs and may provide a basis for rationalizing the adverse health effects frequently associated with the use of this herbal laxative.

Keywords: Euphorbia heterophylla, toxicity, liver, pancreas, kidney, plasma electrolytes.

INTRODUCTION

Euphorbia heterophylla (spurge weed) is a medicinal shrub that grows freely in the savannah and tropical forest zones. The leaves of the plant serve diverse ethno-medicinal purposes in many cultures. In India, the leaves are used for treating diabetes. In Nigeria, the plant is employed in the treatment of bronchitis, asthma and constipation. The plant is also used as a lactogenic agent and for curing gonorrhea. Studies have shown that E. heterophylla exhibits antibacterial activity, as well as laxative activity. Indeed in Nigeria, the plant is more popular for its laxative properties than for any other use. Results from phytochemical screening have shown that Euphorbia heterophylla is rich in alkaloids, flavonoids and tannins, but low in saponins. The laxative property of E. heterophylla has been ascribed to synergistic effect of phorbols and bulk-forming disaccharides in the plant. This laxative effect is so strong that amongst the lgbo ethnic group in Nigeria it has earned the cautionary sobriquet mere nga ‘le ri, which literally warns consumers to be careful over the dose of the herb taken due to serious health consequences of over-dose. This warning probably arose from the frequent incidents of mortality and severe debilitation observed in rural dwellers that use aqueous extracts of the herb as laxative. Incidents of victims being unable to walk home on their own, or collapsing and dying in the bushes from too frequent defecation are indeed not uncommon. Nevertheless the laxative uses of the herb has not stopped, due probably to poverty of rural dwellers and the problem of high cost of orthodox healthcare. In view of the health hazards associated with this herb, this study was carried out to assess the effect of its aqueous leaf extract on plasma electrolytes and some vital organ functions in an experimental animal model. This is with a view to exploring the scientific basis for the perceived toxic effects of the plant.

MATERIALS AND METHODS

Collection of plant material and preparation of extract

Fresh aerial parts of Euphorbia heterophylla were collected from the bush in Asaba, Delta State, Nigeria. The plant was identified by a Taxonomist at the Department of Plant Biology and Biotechnology, University of Benin, and a voucher specimen (voucher number UBHe0152b) was deposited at the herbarium of the Department. The leaves were washed in running water to remove sand and debris and oven-dried at 50°C for 7 days. Subsequently the dried leaves were pulverized in a blender and extracted in boiling water. In essence, 50 g of pulverised material was soaked in 1L of hot water (100°C) in a beaker and allowed to stand at room temperature (27°C) for 1 h. It was then filtered through a Buchner funnel, and the extract obtained was evaporated to dryness at reduced pressure in a rotary evaporator. The residue obtained was kept refrigerated at 4°C and used within two days.

Acute toxicity studies

The LD50 of the extract was determined by the method of Miller and Tainter as elaborated by Randhawa. Six groups of rabbits (6...
rabbits/groups) were separately given by oro-gastric route, six
graded doses of the extract i.e. 50 mg, 100 mg, 200 mg, 300 mg, 800
mg and 1600 mg/kg body weight. The animals were observed
closely in the first 2 h and subsequently at 6 h and 24 h for signs of
toxicity such as writhing, loss of coordination, mortality, convulsion
and loss of fur. The number of dead rabbits at each dose and the
mortality were obtained, and the % mortalities were converted to
probits. The LD₅₀ was calculated from a plot of probit against log
dose.

Experimental animals, grouping and treatment
A total of 18 mixed breed English rabbits, aged about two months
were purchased from a breeder at Aduwawa, Benin City, Edo State,
Nigeria. The rabbits were maintained in clean rabbit hutch on
grower’s mash (Guinea Feeds Ltd, Benin City) and acclimatized to
laboratory conditions for two weeks prior to the experiment. They
were then randomly assigned to three groups, each having 6
animals. Rabbits in one group received the extract at a dose of 10
mg/kg body weight, while another group was given a higher dose of
20 mg/kg body weight. Extract administration was via oro-gastric
tube. The third group of rabbits received saline in place of extract
and served as controls. The experiment lasted for 18 days, during
which the animals were maintained on grower’s mash (Guinea
Feeds Ltd, Benin) and drinking water ad libitum which the animals were maintained on grower’s

Biochemical analysis
Fasting blood glucose was determined colorimetrically using
Random assay kits. Amylase was assayed colorimetrically using
Random kits, based on the ability of the enzyme to hydrolyse p-
nitrophenyl-D-maltosephoside (PNP). AST and ALT were assayed
colorimetrically by measuring the hydrazone derivatives of their
keto acid products, according to manufacturer’s instructions
contained in Random assay kits. ALP assay was carried out in a
colorimetric reaction using Quimica Clinica Applicada assay kits,
based on measurement of the amount of p-nitrophenol liberated
from p-nitrophenyl phosphate, pNPP by the enzyme. GGT assay
was carried out by monitoring the amount of 5-amino-2-nitroanilide
released from gamma-glutamyl-3-carboxy-4-nitroanilide at 405 nm,
as described in Random assay kits. Protein was assayed using
Random assay kits according to manufacturer’s instruction. Random
assay kits were also used for albumin determination, based on the
quantitative binding of the protein to the indicator bromocresol
green to form a colored complex which absorbs strongly at 578 nm.
Plasma urea was estimated using Random assay kits as per
manufacturer’s instruction. The assay is based on the Bethel
reaction, in which ammonia liberated from urea by urease reacts
with phenol and hypochlorite to yield a blue-colored solution that
absorbs at 630 nm. Creatinine was also assayed with Random kits,

Based on the reaction of creatinine with alkaline picric acid. CI was
determined titrimetrically using AgNO₃ and K₂CrO₄ as indicator. Na⁺
and K⁺ were estimated by flame photometry using appropriate
standards.

Statistics
All data were expressed as Mean ± SEM of 6 replicates. Differences
between means were analyzed with paired sample Student’s t-test
using SPSS package (version 15). P values < 0.05 were taken as
significant.

RESULTS
Results for the effect of the extract administration on plasma and
hepatic levels of ALP, AST, ALT and GGT are shown on Table 1A and
Table 1B respectively. The E. heterophylla extract significantly
and dose-dependently increased plasma activities of ALP, GGT and
AST, with significant decreases in the liver activities of the three
enzymes relative to control values (P < 0.05). A reverse trend was
seen in ALT activity, which was significantly decreased in the
plasma and significantly increased in the liver (P < 0.05).

Table 1A: Plasma levels of ALP, AST, ALT and GGT in the extract-
treated groups and controls (U/L)

<table>
<thead>
<tr>
<th>Group</th>
<th>ALP</th>
<th>AST</th>
<th>ALT</th>
<th>GGT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>3.25 ± 0.10³</td>
<td>26.83 ± 0.90³</td>
<td>51.80 ± 1.00³</td>
<td>2.93 ± 0.01³</td>
</tr>
<tr>
<td>Group 2</td>
<td>4.91 ± 0.02³</td>
<td>87.17 ± 0.30³</td>
<td>23.39 ± 0.70³</td>
<td>10.27 ± 0.30³</td>
</tr>
<tr>
<td>Group 3</td>
<td>10.15 ± 0.10³</td>
<td>48.87 ± 0.50³</td>
<td>34.03 ± 2.00³</td>
<td>13.43 ± 0.50³</td>
</tr>
</tbody>
</table>

Values are mean ± SEM (n = 6). Those with different superscripts across
differ significantly (P < 0.05)

Table 1B: Liver levels of ALP, AST, ALT and GGT in the treated rabbit
groups and controls (U/g fresh weight)

<table>
<thead>
<tr>
<th>Group</th>
<th>ALP</th>
<th>AST</th>
<th>ALT</th>
<th>GGT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>127.07 ± 0.50³</td>
<td>218.33 ± 3.00³</td>
<td>195.00 ± 1.00³</td>
<td>15.73 ± 0.09³</td>
</tr>
<tr>
<td>Group 2</td>
<td>125.03 ± 0.03³</td>
<td>137.00 ± 3.00³</td>
<td>201.33 ± 0.50³</td>
<td>11.00 ± 0.01³</td>
</tr>
<tr>
<td>Group 3</td>
<td>79.05 ± 7.00³</td>
<td>169.67 ± 5.00³</td>
<td>237.00 ± 0.50³</td>
<td>13.44 ± 0.30³</td>
</tr>
</tbody>
</table>

Data are expressed as mean ± SEM (n = 6). Those with different superscripts across
differ significantly (P < 0.05)

Plasma urea was dose-dependently and significantly increased by the
extract (P < 0.05) but the changes in plasma creatinine were not
statistically significant (Table 2). The extract also brought about
significant decreases in total protein in kidney (P < 0.05). Fasting
blood glucose and plasma amylase activity were significantly higher
in the extract-treated rabbits than in controls (P < 0.05). Pancreatic
amylase levels increased initially but decreased significantly at the
higher extract dose; however pancreatic total protein was
significantly decreased in a dose-dependent manner by the extract (P <
0.05). Plasma total proteins and albumin were also significantly
decreased in a dose-dependent manner in the two groups that
received the extract (P < 0.05).
Okolie Ngozi Paulinus et al: Effect of E. heterophylla on Plasma Electrolytes, Liver, Kidney and Pancreas

Table 2: Effect of E. heterophylla extract on plasma amylase, urea, creatinine, pancreatic amylase, fasting blood glucose and total protein content of pancreas, kidney and liver

<table>
<thead>
<tr>
<th></th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plasma urea (mg/dL)</td>
<td>1.86 ± 0.20</td>
<td>1.92 ± 0.20</td>
<td>3.49 ± 0.50</td>
</tr>
<tr>
<td>Plasma creatinine (mg/dL)</td>
<td>0.68 ± 0.06</td>
<td>0.61 ± 0.07</td>
<td>0.71 ± 0.08</td>
</tr>
<tr>
<td>Plasma glucose (mg/dL)</td>
<td>55.81 ± 0.07</td>
<td>69.14 ± 0.30</td>
<td>228.43 ± 3.00</td>
</tr>
<tr>
<td>Plasma albumin (mg/dL)</td>
<td>41.01 ± 5.00</td>
<td>17.69 ± 2.00</td>
<td>47.44 ± 6.02</td>
</tr>
<tr>
<td>Pancreatic amylase (U/g tissue)</td>
<td>68.34 ± 0.50</td>
<td>99.02 ± 2.00</td>
<td>77.99 ± 0.80</td>
</tr>
<tr>
<td>Pancreatic protein (mg/g tissue)</td>
<td>83.92 ± 2.00</td>
<td>64.69 ± 0.70</td>
<td>49.83 ± 0.70</td>
</tr>
<tr>
<td>Kidney protein (mg/g tissue)</td>
<td>420.67 ± 1.00</td>
<td>341.33 ± 0.40</td>
<td>349.67 ± 6.67</td>
</tr>
<tr>
<td>Liver protein mg</td>
<td>29.11 ± 0.80</td>
<td>24.49 ± 2.00</td>
<td>15.32 ± 1.11</td>
</tr>
<tr>
<td>Plasma total protein (mg/dL)</td>
<td>19.17 ± 0.40</td>
<td>17.50 ± 0.80</td>
<td>13.00 ± 0.40</td>
</tr>
<tr>
<td>Plasma albumin (mg/dL)</td>
<td>4.21 ± 0.11</td>
<td>3.49 ± 0.10</td>
<td>2.12 ± 0.30</td>
</tr>
</tbody>
</table>

Values are mean ± SEM (n = 6). Those that have different superscripts across differ significantly (P < 0.05).

Table 3: Effect of aqueous extract of E. heterophylla on plasma levels of Na⁺, K⁺ and Cl⁻

<table>
<thead>
<tr>
<th></th>
<th>Group 1</th>
<th>Group 2</th>
<th>Group 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na (mEq/L)</td>
<td>132.00 ± 0.04</td>
<td>125.46 ± 2.33</td>
<td>123.13 ± 0.40</td>
</tr>
<tr>
<td>K (mEq/L)</td>
<td>4.82 ± 0.02</td>
<td>5.39 ± 0.01</td>
<td>5.60 ± 0.01</td>
</tr>
<tr>
<td>Cl (mEq/L)</td>
<td>115.60 ± 0.30</td>
<td>135.21 ± 4.71</td>
<td>124.36 ± 2.33</td>
</tr>
</tbody>
</table>

Results are mean ± SEM (n = 6). Values with different superscripts across differ significantly (P < 0.05).

DISCUSSION

Constipation is one of the most common gastrointestinal problems known to man19-23. The disease has been linked to many factors such as inadequate water intake, physical inactivity and low fiber diets24. Constipation results in increased intestinal transit time due to decreased intestinal motility, which leads to less frequent evacuation of faecal matter25. Although the use of herbal purgatives for alleviation of constipation has gained acceptance in many cultures, this practice is not without some toxic consequences. It has been shown that although plants of *Euphorbia* species possess medicinal properties, they are also toxic26. Indeed *Euphorbia heterophylla* is listed as one of the toxic species of *Euphorbia* species27. In the present study, the LD₅₀ of the *Euphorbia heterophylla* extract was 208 mg/kg. Arising from the fact that substances with LD₅₀ below 5000 mg/kg have been classified as toxic28, the LD₅₀ value of 208 mg/kg, and the dullness, loss of fur, loose watery stools and weakness observed in the rabbits during the acute toxicity study strongly suggest that the extract is toxic. The loose, watery droppings are evidence of the laxative effect of the plant. The toxicity of the extract is further manifested in the significant and dose-dependent increases in plasma levels of AST, ALP and GGT, which were accompanied by significant, though not commensurate decreases in the hepatic activities of these enzymes. Elevation of plasma levels of transaminases, ALP and GGT are associated with cellular lesions due to hepatotoxic agents29. ALT is very abundant in the cytoplasm of hepatocytes, and so is more specific for predicting liver damage than AST. Although the extract significantly decreased plasma ALT, the elevation of AST, ALP GGT and the significant reduction in plasma protein suggest that the extract is hepatotoxic. Elevations in plasma AST, ALT, AST, GGT and lowered plasma proteins are included in current clinical biomarkers of hepatic injury29. Moreover, the extract-induced significant reduction in liver protein, plasma total protein and plasma albumin indicate likely impairment of liver synthetic ability. The extract at a dose of 20 mg/kg body weight, raised the fasting blood glucose to a level 4 times the control value, and significantly increased plasma amylase and pancreatic protein levels. These results suggest that the use of the extract may predispose consumers to acute pancreatitis and hyperglycemia. Elevation of blood amylase is a marker of acute pancreatitis28. In addition, the extract-induced increase in blood urea nitrogen suggest impairment of kidney function, and is in agreement with a previous report of herbal laxative-induced changes in serum urea, electrolytes and creatinine in *Aloe vera* treated rats28. The extract-induced significant decreases in plasma Na⁺ and increases in plasma Cl⁻ and K⁺ is not surprising. Many natural laxatives bring about accumulation of fluid and increased colonic motility by decreasing Na⁺ absorption and increasing Cl⁻ secretion29. Sodium ion depletion in blood has been associated with the laxative effects of some *Aloe vera* species in rabbits29, and in humans30. Thus the decrease in plasma Na⁺ might have arisen from increased loss of the electrolyte via the loose, watery stool due to the laxative effect of the extract. Decreased Na⁺ and water absorption during the use of some laxatives have been attributed to disruption of colonic epithelial cell ion gradient due to inhibition of Na⁺-K⁺-ATPase and decreased ATP32,33. This is true especially for anthranoid herbal laxatives. Anthranoids are absent in *E. heterophylla* but the plant contains phorbols to which its laxative effect has been ascribed34. Phorbol esters inhibit Na⁺-K⁺-ATPase36. Na⁺ is a major and very important extracellular electrolyte35. Its depletion in blood leads to dehydration and hypotension32,35. Since the extract significantly decreased plasma Na⁺, and since phorbol esters inhibit Na⁺-K⁺-ATPase, it is likely that *E. heterophylla* may exert its laxative effect through a mechanism related to that of the anthranoid herbal laxatives.

CONCLUSION

Taken together, it seems reasonable to suggest that the results obtained in this study indicate that the extreme weakness and fatalities associated with the use of *E. heterophylla* as a laxative may be due to dehydration and toxic effect of the herb on some vital organs. Thus it would appear that the traditional admonition for caution in the use of this herbal laxative may not be misplaced, especially for individuals whose overall health status and medical history are uncertain.

REFERENCES

3. Falodun A, Okunrobo LO, Uzoamaka N. Phytochemical screening and anti-inflammatory evaluation of methanolic and

15. American College of Gastroenterology (ACG). Chronic constipation linked to increased risk of colorectal cancer. Science Daily; 2012.

Source of support: Nil, Conflict of interest: None Declared

Okolie Ngozi Paulinus et al: Effect of *E. heterophylla* on Plasma Electrolytes, Liver, Kidney and Pancreas

How to cite this article: Okolie Ngozi Paulinus, Falodun Abiodun, Aga Kinsky, Egbeg Justine Uchechukwu, Ajayi Keyinde, Madu Kelechi and Eijayeshina Joseph. Effect of aqueous leaf extract of *Euphorbia heterophylla* on kidney, liver and pancreatic functions and plasma electrolytes in rabbits. *J Pharm Sci Innov.* 2015;4(2):116-119 http://dx.doi.org/10.7897/2277-4572.04227