AMELIORATIVE EFFECT OF Cocos nucifera (COCONUT) WATER ON GENTAMYCIN INDUCED RENAL TOXICITY IN ADULT WISTAR RAT

Ehimigbai, Agbonlurai Richard O.1*, Anunobi, Arinze Albert2
1Lecturer, Department Of Anatomy, Faculty of Basic Medical Science, College of Medical Science, University of Benin, Benin City, Edo State, Nigeria
2Research Assistant, Department Of Anatomy, Faculty of Basic Medical Science, College of Medical Science, University of Benin, Benin City, Edo State, Nigeria

*Corresponding Author Email: ehirichard22@yahoo.com

ABSTRACT

The ameliorative potential of Cocos nucifera water in gentamycin induced kidney toxicity was evaluated using adult wistar rats. Twenty-four (24) adult wistar rats weighing between 190g to 240g were assigned to 4 groups of 6 rats each and the gentamycin were administered intraperitoneally while the Cocos nucifera water was given via orogastric tube for 24 consecutive days. Group A rats representing the control were fed normal diet and water ad libitums; while Group B were treated with 1ml of Cocos nucifera water only, Group C were treated with 100mg / kg gentamycin only, and Group D were treated with 1ml Cocos nucifera water and 100 mg / kg gentamycin respectively. Biochemically, the result showed that Oral administration of 100mg / kg gentamycin revealed marked kidney toxicity as showed by elevation of the activity of the serum urea, creatinine, superoxide dismutase and catalalase along with decreased level of malonyl dehydrogenase. The control group, the Cocos nucifera water only group and the co-administered group of both Cocos nucifera water and gentamycin showed normal biochemical value of serum urea, creatinine, superoxide dismutase catalalase and malonyl dehydrogenase. Histologically, the gentamycin only group showed focal areas of tubular epithelial cloudy swelling and mild interstitial congestion. While the co-administered group of both Cocos nucifera water and gentamycin showed normal cytoarchitectural structure of the kidney. In conclusion, these results as evidenced by histological and biochemical parameters suggested that Cocos nucifera water possessed ameliorative potential on gentamycin induced kidney toxicity.

Keywords: Cocos nucifera water, Gentamycin, Kidney, Catalase, Urea, Creatinine and toxicity.

INTRODUCTION

Gentamycin is among the antibiotics that are very potent in the treatment of microorganisms that are gram negative. This drug like other aminoglycosides causes nephrotoxicity by inhibiting protein synthesis in kidney cells. This mechanism particularly causes necrosis of renal cells in the proximal tubule, leading to acute tubular necrosis which can result into acute renal failure.1

Cocos nucifera is naturally a tall palm tree that is cultivated in the tropical region. Its Fruits are arranged in cluster in various level of development.2

The use of Cocos nucifera water to neutralize poisons is a popular practice in Africa. It has quite a lot been used as an acute therapy for effects of drug over dosage.3 Studies have revealed that Cocos nucifera water have organic compound that hold a strong growth promoting abilities which is been used as a therapy in the treatment of kidney and urethral stones.4 It contains mainly fats, proteins, sodium, magnesium, potassium and calcium.5,6

Furthermore, Aluisio et al. 7 stated that the fractions of Cocos nucifera water can act as a prospective natural antioxidant due to its free radical scavenging strength.

MATERIALS AND METHODS

Collection / Preparation

Thirty pieces of coconut which were stored in cold atmosphere were purchased from Ikhin market in Owan East Local government Area of Edo State, Nigeria. It was identified by a curator in the department of Pharmacognosy, University of Benin, Benin City.

The fibers covering the Cocos nucifera were removed before cracking it with the back of a knife. The liquid endosperm of the cracked Cocos nucifera which is the water is then poured inside a clean container. One Cocos nucifera is cracked per day for this experiment.

The gentamycin sulphate injection was manufactured by Yanzhou Xier Kangtai Pharma. Co Limited Yanzhou, Shandong, China.

Experimental animals: Twenty four adult wistar rats with varying weight of 180-200g were randomly assigned into four groups; control group A (n=6), treatment group; group B (n=6) and group C (n=6) and group D (n=6). The rats were obtained and maintained in the Animal House of the Department of Anatomy, School of Basic Medical Sciences, University of Benin, Benin city, Edo State, Nigeria. The wistar rats were kept in a ventilated cage for 2 weeks before the experiment for proper acclimatization. Food and clean water were given liberally. They were placed on standard livestock feed (vital growers feed).

The wistar rat experimental usage was in according to the National Institutes of Health Guide for the care and use of laboratory Animals (NIH, 2002 publication, No. 83-23), (Revised 1978).
Table 1: Schedule for Administration of Rifampicin and Cocos nucifera Water in Rats

<table>
<thead>
<tr>
<th>Groups</th>
<th>Dose/kg body weight</th>
<th>No of Days/ Route</th>
</tr>
</thead>
<tbody>
<tr>
<td>A Control</td>
<td>Feed on normal rat chow and tap water ad libitum</td>
<td>24 days/orally</td>
</tr>
<tr>
<td>B Renoprotective</td>
<td>1ml Cocos nucifera water²</td>
<td>24 days/orally</td>
</tr>
<tr>
<td>C Renotoxic</td>
<td>100mg / kg gentamycin²</td>
<td>24 days/intraperitoneally</td>
</tr>
<tr>
<td>D Combined</td>
<td>1ml Cocos nucifera water plus 100mg / kg gentamycin</td>
<td>24 days/orally. 24 days / intraperitoneally.</td>
</tr>
</tbody>
</table>

The animals were anaesthetized using chloroform inhalation on the 25th days of experiment. A midline incision was made on the abdomen using a surgical blade and the kidneys were dissected out and fixed in 10% formal saline for histological analysis.

Histological Techniques

The laboratory chemicals used for the experiment were obtained from Patani chemicals limited Benin city, Edo State. The tissues were dehydrated in ascending grades of alcohol, cleared in xylene before embedded in paraffin wax. The tissue blocks were then sectioned at 5 micron per thickness by using a rotary microtome. The deparaffused tissue sections were stained with Haematoxylin and Eosin.

Photomicrography

The histological results were obtained on photomicrography using digital photograph attached to a research microscope at the Department of Anatomy, School of Basic Medical Sciences, University of Benin, Benin-City, Edo State, Nigeria.

Biochemical Assays

Serum was used to determined urea¹¹, creatinine¹², malonaldehyde (MDA)¹³, catalase(CAT)¹⁴, superoxide dismutase (SOD).¹⁵

Statistical analysis: Renal and antioxidant parameters were evaluated for statistical significance. Data are expressed as the mean ± SEM. The data were analyzed by analysis of variance (ANOVA) followed by least square difference using the Statistical Package for the Social Sciences (S.P.S.S. 17). The analysed data were represented with tables. The level of significance was set at p<0.05.

RESULT

Fig. 1 Control: Rat kidney composed of glomeruli A, tubules B and interstitial space C (H&E x 100)

Fig. 2: Rat kidney given Cocos nucifera water only showing normal glomeruli A and tubules B (H&E x 100)

Fig. 3: Rat kidney given Gentamycin only showing focal areas of tubular epithelial cloudy swelling A and mild interstitial congestion B (H&E x 100)

Fig. 4: Rat kidney given Cocos nucifera water and Gentamycin showing unremarkable renal tubular epithelium A and patent lumen B (H&E x 100)
Biochemical Findings

The mean Urea and Creatinine were both highest in gentamycin treated group (56.67±10.33) and (1.94±0.40) when compared with other groups. The mean SOD was highest in Gentamycin treated rats (92.33 ± 2.34) and lowest in Control rats who received 1ml of sterile water daily (to control for the stress of drug administration). The mean CAT level was also found to be elevated in all treatment groups and highest in group C (229.17 ± 14.29) when compared to control (171.17 ± 2.23). In addition, the mean MDA was lowest in gentamycin treated group (2.97±0.36) when compared with other group. The comparison of mean Urea, Creatinine, SOD, CAT and MDA levels between Cocos nucifera water + Gentamycin treated rats (group D), Gentamycin only treated rats (group C), Cocos nucifera water only treated rats (group B) and Control rats were statistically significant (p<0.001 for all comparisons).

<table>
<thead>
<tr>
<th>Group</th>
<th>Urea Mean(SD)</th>
<th>Creatinine Mean(SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>24.7(1.60)</td>
<td>0.80(0.06)</td>
</tr>
<tr>
<td>B</td>
<td>24.03(1.10)</td>
<td>0.82(0.02)</td>
</tr>
<tr>
<td>C</td>
<td>56.67(10.33)</td>
<td>1.94(0.04)</td>
</tr>
<tr>
<td>D</td>
<td>24.67(4.13)</td>
<td>0.82(0.01)</td>
</tr>
</tbody>
</table>

Table 2: Renal Function Parameters of the Control Group with Treated Groups

<table>
<thead>
<tr>
<th>Group</th>
<th>SOD Mean(SD)</th>
<th>CAT Mean(SD)</th>
<th>MDA Mean (SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>57.83(1.47)</td>
<td>171.17(2.23)</td>
<td>8.33(0.82)</td>
</tr>
<tr>
<td>B</td>
<td>60.67(2.07)</td>
<td>181.00(3.01)</td>
<td>8.33(0.27)</td>
</tr>
<tr>
<td>C</td>
<td>92.33(2.34)</td>
<td>229.17(14.29)</td>
<td>2.97(0.36)</td>
</tr>
<tr>
<td>D</td>
<td>63.00(2.10)</td>
<td>183.50(3.89)</td>
<td>8.15(0.15)</td>
</tr>
</tbody>
</table>

Table 3: Antioxidant Enzymes Parameters of the Control Group with Treated Groups

DISCUSSION

Naturally, it is a well known fact that gentamycin causes nephrotoxicity.16 While Cocos nucifera water can act as an antioxidant.17 It is therefore important to investigate if Cocos nucifera water can ameliorate the effect of gentamycin on the kidney. In the present study, there was elevation of both serum urea and creatinine level in gentamycin only group (Table 2) signifying the toxicity nature of gentamycin and also corroborating early work done.16 The normalization of urea and creatinine level in Cocos nucifera water only group and also co-administered group shows the non toxic and ameliorative nature of Cocos nucifera water on the kidney. Our results corroborates the findings of other report17 that where it was concluded that Cocos nucifera water has ability to inhibit the oxidative stress genes therefore help in maintaining normal activity of oxidative enzymes.

The mean superoxide dismutase and catalase were highest while malonaldehyde was lowest in Gentamycin only group (92.33 ± 2.34). These results are due to the deleterious oxidative stress the gentamycin might have had on the kidney tubules by releasing nitric oxide, superoxide and hydrogen peroxide that might have act on the kidney tubular protein, lipid and carbohydrate thereby leading to cytoarchitctural distortion as evidenced by the biochemical parameters in Table 3.

The above findings is strongly supported by early work done.18 Morales et al.18 stated that cytotoxic gentamycin act directly and also indirectly by attacking mitochondria, inhibits respiration and therefore reduces ATP production, and generates oxidative stress. Also this oxidative stress occurred mainly in the renal tubular cells.19 This oxidative stress is interceded by hydroxyl radicals from hydrogen peroxide and also by superoxide anions.20,21 The mean superoxide dismutase, catalase and malonaldehyde values were normal in co-administered group, Cocos nucifera water only group and Control rats group. This normalcy may arise due to antioxidant effect of Cocos nucifera water on biochemical parameter. Our present studies are substantiated by previous reports.17

The photomicrograph of the kidney in the control showed normal histological features with a detailed cortical parenchyma and the renal corpuscles appearing as dense rounded structures with the glomerulus surrounded by a normal Bowman’s space (Figure 1). The group B where only Cocos nucifera water was given also showed normal glomerulus, tubules and interstitial spaces (Figure 2) while gentamycin only group showed a lot of distortion and tubular epithelial cloudy swelling (Figure 3). The co-administered group revealed unremarkable tubular epithelium and patent lumen (Figure 4).

The observed changes in gentamycin only group might be due to the cytotoxic effect of gentamycin on the kidney (Figure 3). Nephrotoxicity caused by aminoglycosides manifests noticeably and possessed typical alteration in lysosomes of proximal tubular cells which are consistent with the buildup of polar lipids.22 These alterations are accompanied by signs of tubular dysfunctions or changes (liberation of brush border and lysosomal enzymes, reduced reabsorption of filtered protein).16 Furthermore the group D where both coconut water and gentamycin were given showed unremarkable tubular epithelium and patent lumen (Figure 4). These ameliorative strength may arises due to the anti-oxidant effect of the Cocos nucifera water. Our findings are supported by earlier work done.23,24 They discovered that Cocos nucifera water naturally possesses antioxidant properties.

CONCLUSION

In conclusion, our findings showed that gentamycin administration causes marked histological and biochemical derangement in the kidney, while Cocos nucifera water was able to ameliorate this toxic effect due to its antioxidant potentials.

RECOMMENDATIONS

Cocos nucifera water may be recommended as a therapeutic supplement in the treatment of gentamycin toxicity in the kidney.

REFERENCES

Source of support: Nil, Conflict of interest: None Declared