

Journal of Pharmaceutical and Scientific Innovation

www.jpsionline.com

Research Article

ASSOCIATION AMONG HbA₁C AND LIPID PROFILE IN KOLAR TYPE 2 DIABETIC POPULATION Raja Reddy P¹, Jayarama N², Shashidhar KN³

¹Assistant Professor, Department of Physiology, Sri Devaraj Urs Medical College Tamaka, Kolar, India ²Associate Professor, Department of General Medicine, Sri Devaraj Urs Medical College Tamaka, Kolar, India ³Professor and Head, Department of Biochemistry, Sri Devaraj Urs Medical College Tamaka, Kolar, India *Corresponding Author Email:drpillaram@gmail.com **DOI:** 10.7897/2277-4572.02685 Published by Moksha Publishing House. Website www.mokshaph.com All rights reserved.

Received on: 14/09/13 Revised on: 24/10/13 Accepted on: 05/11/13

ABSTRACT

Study was planned to evaluate the relationship among glycated hemoglobin (HbA₁C) and lipid profile in type 2 diabetic population. A total of 750 type 2 diabetic patients (males, 493; females, 257; mean age, 55.65 ± 12.47) were included in our study. Venous blood samples were collected from all the subjects after at least 8 hours fasting. The sera was analyzed for HbA₁c, fasting blood glucose (FBG), total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-c) and low-density lipoprotein cholesterol (LDL-c). The statistical analysis was done by SPSS. The mean HbA₁ C was 9.18 %. Female patients showed more mean values for FBG (155 ± 75), TC (189 ± 103), TG (190 ± 96), LDL-c (106 ± 39) and HbA₁C (9.65 ± 9.65). The HbA₁ C showed significant positive relationship with TC (r = 0.144) and LDL-c (r = 0.086). It was concluded from the results of this study that HbA₁ C can be used as a preventive measure for the development of cardiovascular disease in type 2 diabetes and study also suggested relative risk of cardiovascular disease in higher in diabetic women compared to diabetic men. **Keywords:** Diabetes mellitus, Dyslipidemia, Glycated hemoglobin, lipid profile

INTRODUCTION

Diabetes currently affects more than 170 million people Worldwide and a projection for the future is alarming. Diabetes mellitus is a group of metabolic disease characterized by hyperglycemia resulting from defects in insulin secretion, insulin action, or both.¹ Diabetes causes about 5 % of all deaths globally each year.² Hyperglycemia is the apparent feature of diabetes due to diagnostic dependency of patients on blood glucose measurements.³ However, most of the individuals may also carry unnoticed dyslipidemia, characterized by increased levels of triglycerides and LDL-c. Glycated hemoglobin (HbA₁c) is a routinely used marker for long-term glycemic control. In accordance with its function as an indicator for the mean blood glucose level, HbA1c predicts the risk for the development of diabetic complications in diabetes patients.^{5,6} Apart from classical risk factors like dyslipidemia, elevated HbA1c has now been regarded as an independent risk factor for CVD in subjects with or without diabetes. Estimated risk of CVD has shown to be increased by 18 % for each 1 % increase in absolute HbA₁c value in diabetic population⁷. Positive relationship between HbA1c and CVD has been demonstrated in nondiabetic cases even within normal range of HbA1c and CVD has been demonstrated in non-diabetic cases even within normal range of HbA₁c.^{8,9} Hence, the aim of this study was to observe the relationship among glycated hemoglobin (HbA₁c) and serum lipid profile in type 2 diabetic patients.

MATERIALS AND METHODS

The present study was conducted in R L Jalappa hospital attached to Sri Devaraj Urs Medical College, Kolar, India. Randomly selected 750 type 2 diabetes and non-diabetes patients attending medicine outpatient department from September 2012 to February 2013 were included in the study. The study was approved by institutional ethical committee with clearance number of DMC/KLR/MEU/IEC-CER/99/2013-14 and a written informed consent was

obtained from all the participants. Patients suffering from other causes of secondary dyslipidemia were excluded. Selfreported pregnancy, any chronic infectious disease and weight loss > 6 kg during past 6 months were also excluded from the study. Fasting blood samples were analyzed for total cholesterol (TC) by enzymatic cholesterol oxidase/peroxidase method, triglycerides (TG) by enzymatic glycerol kinase/peroxidase method, high density lipoprotein cholesterol (HDL-C) by precipitation method, low density lipoprotein cholesterol (LDL-C) was calculated bv Friedewald's (TC-TG/5+HDL) considering its limitations. The glycated haemoglobin (HbA₁ C) was estimated by high pressure liquid chromatography method. Patients having one or more parameters (TG, HDL-c, or LDL-C) outside the targets recommended by American Diabetes Association (ADA) were considered to have dyslipidemia.¹⁰ The data was analyzed with SPSS. The mean, SD and correlation (Pearson's) test was used to interpret results.

RESULTS AND DISCUSSION

The mean age, HbA₁c, total cholesterol (TC), triglycerides (TG), high density lipoprotein cholesterol (HDL-c), low density lipoprotein cholesterol (LDL-c) and very low density lipoprotein cholesterol (VLDL-c) were 55.65 ± 12.47 years, 9.18 ± 2.86 %, TC 166.87 \pm 37.32 mg/dl, 38.09 \pm 20.27 mg/dl, 92.62 ± 34.63 mg/dl, 36.33 ± 19.54 mg/dl and 180.87 \pm 94.26 mg/dl respectively (Table 1). The mean age \pm SD of male and female subjects were 152.06 ± 75.40 and $155.78 \pm$ 75.10 respectively. The mean value of HbA₁c and FBG slightly higher in females in comparison to male subjects, but the differences were not significant. Among the circulating lipids, TC, TG and LDL-c were higher in females than males; these differences were statistically not significant (Table 2). Further it was found from correlation analysis, glycated hemoglobin (HbA1c) was showed significant positive relation with TC (r = 0.114) and LDL-c (r = 0.086) (Table 3).

However TG and HDL-c not showed any significant relationship with HbA₁C.

Table 1: Mean \pm SD of HbA₁C and lipid profile of type 2 diabetics

Variables	Mean ± SD		
Age (years)	55.65 ± 12.47		
HbA1c (%)	9.18 ± 2.86		
TC (mg/dl)	166.87 ± 37.32		
HDL-c (mg/dl)	38.09 ± 20.27		
LDL-c (mg/dl)	92.62 ± 34.63		
VLDL-c (mg/dl)	36.33 ± 19.54		
TG (mg/dl)	180.87 ± 94.26		

HbA₁C: Glycated hemoglobin, TC: Total cholesterol, HDL-c: High-density lipoprotein cholesterol LDL-c: Low-density lipoprotein cholesterol, VLDL-c: Very Low-density lipoprotein cholesterol and TG: Triglycerides

 Table 2: Lipid profile parameters result of male and female type 2

 diabetic patients

Parameters	Male (n = 493)	Female (n = 257)
	Mean ± SD	Mean ± SD
FBG	152.06 ± 75.40	155.78 ± 75.10
TC	166.87 ± 37.32	189.41 ± 103.18
TG	180.87 ± 94.26	190.71 ± 96.38
HDL-c	38.09 ± 20.27	38.74 ± 8.07
LDL-c	92.62 ± 34.63	106.15 ± 39.59
VLDL-c	36.33 ± 19.54	40.64 ± 38.92
HbA ₁ C	9.18 ± 2.86	9.65 ± 3.01

FBS: Fasting blood glucose, TC: Total cholesterol, TG: Triglycerides, HDL-c: High-density lipoprotein cholesterol, LDL-c: Low-density lipoprotein cholesterol, VLDL-c: Very Low-density lipoprotein cholesterol and HbA₁C: Glycated hemoglobin

Table 3: Correlation among HbA1c and lipid profile of type 2 diabetes

Variables	ТС	HDL-c	LDL-c	VLDL-c	TG
HbA1c	0.114*	0.035	0.086*	0.062	0.073
TC	-	0.039	0.398	0.150	0.189
HDL-c		-	-0.044	0.033	-0.151
LDL-c			-	0.087	-0.050
VLDL-c				-	-0.621

*Significant at P < 0.01

TC: Total cholesterol, TG: Triglycerides, HDL-c: High-density lipoprotein cholesterol, LDL-c: Low-density lipoprotein cholesterol, VLDL-c: Very Low-density lipoprotein cholesterol and HbA₁C: Glycated hemoglobin

High prevalence of hypercholesterolemia, hypertriglyceridemia and high LDL-c and low HDL-c was found in type 2 diabetes which is well known risk factors for cardiovascular diseases¹¹. The cause of dyslipidemia in type 2 diabetes mellitus may be that, insulin is not working properly and which affects the liver Apo lipoprotein production¹². The apolipoprotein regulates the enzymatic activity of lipoprotein lipase and cholesterol ester transport protein.¹² A highly positive significant relationship of HbA₁C with dyslipidemia was observed in the present study. Ercivas *et al*¹³ also reported positive correlation of HbA1C level with TC and TG in diabetic patients. Female diabetic patients showed higher mean values for FBG, TC, TG, and LDL-c than male diabetic patients. Study suggests relative risk of cardiovascular disease is higher in diabetic women compared to men. The diabetes complication and control trail established HbA₁C as the gold standard of glycemic control. The level of HbA₁C value ≤ 7.0 % was said to be appropriate for reducing the risk of cardiovascular complications. The diabetic patients with higher HbA₁C value can exhibit a significant increase in TC, LDL-c TG and HDL-c in comparison to patients with HbA₁C

value $\leq 7.0 \%^{14}$. Khan *et al.*¹⁵ reported the severity of dyslipidemia increases in patients with higher HbA₁C value. As elevated HbA₁c and dyslipidemia are independent risk factors of CVD, diabetic patients with elevated HbA₁c and dyslipidemia can be considered as a very high risk group for CVD. Improving glycemic control can substantially reduce the risk of cardiovascular events in diabetes¹⁶ and also reported that reducing the HbA₁C level by 0.2 % could lower the mortality by 10 %.¹⁷

CONCLUSION

The findings of this study clearly suggest that HbA_1C endures the ability of predicting serum lipid profile in both males and female diabetic patients. Thus, monitoring of glycemic control using HbA_1C along with lipid profile could have additional benefits of identifying diabetic patients who are at a greater risk of cardiovascular complications and study suggest that relative risk of cardiovascular disease is higher in diabetic women compared to diabetic men, but the mechanism behind the increased risk need to be studied further.

REFERENCES

- 1. Wildler E. What is the consequence of an abnormal lipid profile in patients with type 2 diabetes or the metabolic syndrome? Atherosclerosis Supple; 2005. p. 11-14.
- Wild S, Roglic G, Green A. Global prevalence of diabetes estimates for the year 2000 and projections for 2030. Diabetes care 2004; 27: 1047-1053. http://dx.doi.org/10.2337/diacare.27.5.1047 PMid:15111519
- Haffner SM, Lehto S, Ronnemaa T, Pyorala K, Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with or without prior myocardial infarction. N Engle J Med 1998; 339: 229-234. http://dx.doi.org/10.1056/NEJ M199807233390404 PMid:9673301
- Rader DJ. Effects of insulin resistance, dyslipidemia and intraabdominal adiposity on the development of cardiovascular disease and diabetes mellitus. Am J Med 2007; 120: s12-s18. http://dx.doi.org/ 10.1016/j.amjmed.2007.01.003 PMid:17320517
- Sicree R, Shaw J, Zimmet P. Diabetes and impaired glucose tolerance. International Diabetes Federation; 2006. p. 15-103.
- Sultan A, Thuan JF, Avignon A. Primary prevention of cardiovascular events and type 2 diabetes: should we prioritize our interventions? Diabetes Metab 2006; 32: 559-567. http://dx.doi.org/10.1016/S1262-3636(07)70310-5
- Selvin E, Marinopoulos S, Berkenblit G, Rami T, Brancati FL, Powe NR. Metaanlysis: glycosylated hemoglobin and cardiovascular disease in diabetes mellitus. Ann Intern Med 2004; 14: 421-431. http://dx .doi.org/10.7326/0003-4819-141-6-200409210-00007
- Khaw KT, Wareham N, Bingham S, Luben R, Welch A and Day N. Association of hemoglobin A₁C with cardiovascular diseases and mortality in adults. Ann Intern Med; 2004. p. 413-420. http://dx. doi.org/10.7326/0003-4819-141-6-200409210-00006 PMid:15381514
- Wexler DJ, Grant RW, Meigs JB, Nathan DM and Cagliero E. Sex disparities in treatment of cardiac risk factors in patients with type 2 diabetes. Diabetes care 2005; 28: 514-520. http://dx.doi.org/10.2337/ diacare.28.3.514 PMid:15735180
- Hill JB, Kessler G. An automated determination of glucose utilizing a glucose oxidation-peraxidase system. J Lab Clin Chem 1961; 57: 970-980.
- American Diabetes Association. Dyslipidemia management in adult with diabetes. Diabetes Care 2004; 24: s68-s71.
- Goldberg IJ. Lipoprotein lipase and lipolysis: central roles in lipoprotein metabolism and atherogenesis. J. Lipid Res 1996; 37: 693-707. PMid:8732771
- Erciyas F, Taneli F, Arslan B and Uslu Y. Glycemic control, Oxidative stress and lipid profile in children with type 1 diabetes mellitus, Arch. Med. Res 2004; 35: 134-140. http://dx.doi.org/10.1016/ j.arcmed.2003.10.002 PMid:15010193
- 14. Rohlfing CL, Wiedmeyer HM, Little RR, England JD, Tennill A and Goldstein DE. Defining the relationship between plasma glucose and HbA1c: analysis of glucose profiles and HbA1c in the Diabetes Control and Complications trail. Diabetes care 2002; 25: 275-278. http://dx.doi.org/10.2337/diacare.25.2.275 PMid:11815495
- 15. Khan HA, Sobki SH and Khan SA. Association between glycemic control and serum lipids profile in type 2 diabetic patients: HbA1c

Raja Reddy P et al: Association among HBA1C and lipid profile in Kolar type 2 Diabetic population

predicts dyslipidemia. Clin. Exp. Med 2007; 7: 24-29. http://dx .doi.org/10.1007/s10238-007-0121-3 PMid:17380302

- Rosediani M, Azidah AK, Mafauzy M. Correlation between fasting plasma glucose, post prandial glucose and glycated haemoglobin and fructosamine. Med J Malaysia 2006; 61: 67-71. PMid:16708736
- Smith SC. Multiple risk factors for cardiovascular disease and diabetes mellitus. Am J Med 2007; 120: s3-s11. http://dx.doi.org/10.1016/ j.amjmed.2007.01.002 PMid:17320520

Source of support: Nil, Conflict of interest: None Declared

How to cite this article:

Raja Reddy P, Jayarama N, Shashidhar KN. Association among HBA1C and lipid profile in Kolar type 2 Diabetic population. J Pharm Sci Innov. 2013; 2(6):10-12.