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ABSTRACT 

 

Epilepsy is a severe neurological illness characterized by abnormal, recurring, and synchronized brain discharges. Long-term recurring seizure attacks 

can cause substantial brain function loss, as seen in people with temporal lobe epilepsy. Controlling seizure events is critical for epilepsy therapy and 
prognosis. The disease is more common in developing countries than in developed countries. The causes of epilepsy include chemical imbalances such 

as low blood sugar or sodium, head injuries, drug abuse or withdrawal, alcohol withdrawal, stroke tumor affecting the blood vessels (vascular system) 

in the brain, hardening of the arteries (atherosclerosis) in the brain, brain tumours, and brain infections such as meningitis or encephalitis. Given the 
prevalence of epilepsy and the challenges associated with currently available antiepileptic medicines, such as side effects, resistance, safety concerns, 

and high cost, screening models are utilized in epilepsy analysis. Screening models for seizures and epilepsy have been critical in expanding our 

understanding of the fundamental mechanisms underlying ictogenesis and epileptogenesis, as well as in the discovery and preclinical development of 
novel antiepileptic medicines (AEDs). Diverse screening models of epilepsy have been developed in recent years to imitate various seizure forms, with 

no clear advantages or disadvantages. In this study, we will cover the numerous screening models for epilepsy, which will aid in gaining a better 

understanding of the disease. 
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INTRODUCTION 

 

Epilepsy is a central nervous system illness characterized by loss 

of consciousness on a regular basis, with or without convulsions, 

and abnormal electrical activity in the brain. Epilepsy is defined 

as the clinical manifestation of a set of neurons in the brain that 

discharge abnormally and excessively1. Epilepsy is a widespread 

neurological disorder that affects people of different ages, races, 

socioeconomic backgrounds, and geographic areas. Epilepsy is a 

brain illness marked by an enduring proclivity for seizures as well 

as the neurobiological, cognitive, psychological, and social 

implications of recurrent seizures2-4. Seizures are caused by 

abnormal body function as a result of rapid excessive nerve-cell 

discharges in the brain5. They frequently induce loss of 

consciousness, increased muscular activity, or an odd sensation. 

Neurons can fire up to 500 times per second during a seizure, 

which is far faster than normal . Some people experience this only 

once in a while, while others experience it hundreds of times per 

day 6 Epilepsy can be caused by a malfunction in brain circuitry, 

a chemical imbalance in nerve signalling called 

neurotransmitters, or a combination of these factors. Some 

patients with epilepsy have abnormally high levels of excitatory 

neurotransmitters, which enhance neuronal activity, while others 

have abnormally low levels of inhibitory neurotransmitters, 

which decrease neuronal activity in the brain, according to 

researchers. Either condition can result in excessive neural 

activity, which can lead to epilepsy7-8. GABA, or gamma-

aminobutyric acid, is an inhibitory neurotransmitter that has a 

function in epilepsy and is one of the most studied 

neurotransmitters. GABA research has resulted in medications 

that either increase or decrease the amount of this 

neurotransmitter in the brain, or affect how the brain reacts to it. 

Glutamate and other excitatory neurotransmitters are also being 

studied by researchers. In the identification and development of 

novel medications for the treatment of epileptic seizures, animal 

seizure models are critical. Epilepsy is one of the most common 

neurological illnesses, affecting between 0.5 and 1.0 percent of 

the global population9. Seizures can present in a variety of ways, 

depending on the location, extent, and method of propagation of 

the paroxysmal discharge, and are now regarded as a spectrum of 

clinically distinct kinds rather than a single disorder. Epileptic 

seizures frequently result in a transient loss of consciousness, 

putting the person at danger of bodily damage and interfering with 

schooling and job. Treatment is symptomatic in that existing 

medications reduce seizures, but there is no effective prophylactic 

or cure. Because of the necessity for long-term therapy and the 

negative side effects of many medications, medication 

compliance is a big issue. Seizures can also be a dangerous side 

effect of central nervous system (CNS) stimulants and other 

medications. Seizures are common in heat (febrile seizures are 

extremely common in babies), eclampsia, uraemia, 

hypoglycaemia, or pyridoxine deficiency, and frequently in the 

abstinence syndrome of those who are physiologically addicted 

to CNS depressants 10-11. 

 

Pathophysiology of epilepsy 

 

Seizures are brief bursts of activity in the cerebral cortex. When 

the excitatory and inhibitory strengths of the cortical neuron 

organize become unbalanced, a seizure occurs. In an unsteady cell 

film or encompassing back / neighbouring cells, the essential 

physiology of a convulsive scene is discovered. Seizure root in 

either cortical or subcortical zone's Gray matter. At first, a tiny 

number of neurons focus in an aberrant way. At the local level, 

normal membrane conductance and breakdown of inhibitory 

synaptic current, as well as excessive diffusion excitability, 

produce a localized or more broadly attack for the formation of a 

generalized attack. This house is conveyed by physiological 

routes to reach locations in close proximity to remote areas. A 

potassium conductance anomaly, a deficit in voltage-dependent 
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ion channels, or a deficiency of membrane ATPases linked with 

ion transport can all produce an attack by causing an unstable 

neuronal membrane. Some neurotransmitters (e.g., glutamate, 

aspartate, acetylcholine, norepinephrine, histamine, 

corticotropin-releasing factor, purines, peptides, cytokines, and 

steroid hormones) enhance neuronal excitability and propagation, 

whereas butyric acid-amino (GABA) and dopamine inhibit 

neuronal activity and propagation. The demand for increased 

blood flow to the brain to bring CO2 and provide substrate for 

metabolic activity of neurons increases during a seizure, and as 

the seizure progresses, the brain suffers greater ischemia, which 

can lead to neuronal death and brain damage12-13. Certain kinds of 

epilepsy may be linked to mutations in distinct genes. 

Generalized epilepsy and seizure disorders have been linked to 

genes encoding protein subunits of ion channels sensitive to 

activated voltage ligands in children14-15. Mutation of genes 

encoding sodium channel proteins has been proposed as a 

mechanism for some forms of hereditary epilepsy; these channels 

remain open long after sodium is depleted, causing neurons to 

become hyper excitable as glutamate, an excitatory 

neurotransmitter released in large quantities, can form neurons 

towards glutaminergic adhere close-triggers16. (Figure 1) 

 

Triggering Factors and Classification of epilepsy 

 

Epilepsy and seizures  are triggered by a variety of external and 

internal events. Sleep deprivation, systemic infection, fever, key 

stages of the menstrual cycle, intake or withdrawal of certain 

medicines and substances, including alcohol, and homeostatic 

imbalances like hyponatremia are all common seizure triggers. 

External sensory cues that can be used as triggers include touch, 

hot water, certain visual patterns, reading, and music17. 

 

Seizures are characterized based on whether or not consciousness 

is retained and whether or not motor activity is involved. "Simple 

partial" seizures are focal seizures with retained awareness, while 

"complex partial" seizures are focal seizures with diminished 

awareness. Tonic-clonic seizures are seizures that have a 

stiffening (tonic) phase followed by a muscle jerking phase, 

resulting in bilateral motor involvement18-19. (Figure 2) 

 

Screening Models for Epilepsy 

 

Over the years, numerous in vitro and in vivo epilepsy models 

have been described. Brain slices, monosynaptic systems, and 

neuronal cultures are among the in vitro models. These, on the 

other hand, are more adapted to researching epileptogenic 

mechanisms such as ego paroxysmal depolarizing changes, post-

tetanic and long-term potentiation, suppression of GABA and 

glycine responses, and spontaneous repeated firing, among 

others. 

 

In Vivo models, on the other hand, use a variety of animal species 

to induce epilepsy, such as mice, rats, guinea pigs, gerbils, cats, 

dogs, and monkeys, and use a variety of physical and 

chemical/pharmacological stimuli. Some of these epilepsy 

screening models are discussed. 

 

Characteristics of Ideal Model of Epilepsy :-  

• The onset of recurring seizures that occur spontaneously. 

• The clinical phenomenology of these seizures is comparable 

to that of human epilepsy. 

• In man, the onset of epilepsy is age-dependent, as in 

generalized epileptic disorders. 

• Clinical seizures must be accompanied by epileptiform action 

with in EEG. 

• Antiepileptic medication pharmacokinetics should be similar 

to those in humans. 

• Antiepileptic medication plasma concentrations that are 

effective for managing the specific seizure type in 

individuals. 

 

Anti-epileptic medication screening can be done in a variety of 

ways, and some of these methods are mentioned in Table 1. 

 

 
 

Figure 1: Pathophysiology of Epilepsy 
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Figure 2 : Classification of Epilepsy 

 
Table 1  

Animal models Methods to induce convulsion Types of seizures 

In- vivo model  
 

Electrical stimulation : Maximal electroshock 
(MES)  

Kindling 

Chemoconvulsants: 
➢ Pentylenetetrazol (PTZ) Strychnine 

➢ Picrotoxin 

➢ Isoniazid  
➢ Lithium pilocarpine  

➢ Yohimbine 

➢ Bicuculline  
➢ 4-aminopyridine 

➢ n-methyl d-aspartate    

➢ Penicillin 

Generalised tonic-clonic seizures  
Myoclonic and absence seizures 

Acute simple partial seizures 

Clonic- tonic seizures 
Status epilepticus 

Clonic seizures 

Generalised tonic- clonic and absence 
seizures 

 

In- vitro Model 
 

▪ Hippocampal slices 

▪ GABAA receptor binding Assay 
Complex partial seizures 

Genetic Models Photosensitive baboons Audiogenic  

seizures mice Totterer mice and seizures  
-prone mouse strains Genetically  

epilepsy-prone rats 

Generalised tonic - clonic seizures  

 

 

 
 

Figure 3 : Maximal Electroshock (MES)- Induced Seizures 
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Figure 4 : Kindled Seizures Model 

 
 

Figure 5 : Pentylenetetrazol (PTZ) Induced Model 

 

 
 

Figure 6: Development of Lithium- Pilocarpine Induced Seizures 
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Figure 7 : Kainic acid (KA) model Mechanism 

 

 
 

Figure 8 : Hippocampal slices Overview 
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Figure 9 : Hippocampal slices Model Illustration 

 

Maximal Electroshock (MES)- Induced Seizures 

 

The animals employed in the maximum electroshock (MES)-

induced seizures are mice or rats. An external device 

stimulator/convulsiometer is used to deliver an electrical stimulus 

strong enough to cause maximal seizures in the hind leg. The 

animals are given a supramaximal current strength, which is 

around 5- 10 times higher than their individual electrical seizure 

threshold (50 rnA in mice or 150 rnA in rats and for 0.25)20-21. 

Either corneal or ear clip electrodes are used to provide the 

stimulation. In this test, drugs like phenytoin, carbamazepine, 

phenobarbitone, and primidone are quite effective, whereas 

ethosuximide is useless. The fact that the stimulus is so intense is 

a major flaw in this test. As a result, certain potentially beneficial 

agents may be overlooked. Seizures are used to avoid this 

threshold. MES seizures, on the other hand, remain the gold 

standard for detecting antiepileptic action22. 

 

In addition, another study was conducted in which the rats were 

divided into five groups, each of which contained six rats. 

Different groups were given distilled water (10 mL/kg), diazepam 

(5 mg/kg), and ScMeOH at doses of 125, 250, and 500 mg/kg, 

BW, respectively. Convulsions were triggered in all groups of rats 

using an electro-convulsiometer thirty minutes later. Through the 

ear electrodes, a 60 Hz alternating current of 150 mA was 

supplied for 2 seconds. The presence of tonic hind limb extension 

was noted in the animal23. (Figure 3) 

 

Threshold Model for Epilepsy 

 

The ability of a medicine to change the seizure threshold for tonic 

hind limb extension is measured by the current or voltage causing 

hind limb extension in 50% of the animals in a threshold test. This 

test is substantially more sensitive to drugs than the MES test and 

is a better predictor of grandmal generalized seizures. 

Furthermore, threshold testing enable for the discovery of a drug's 

proconvulsant effects22,24. 

Kindled Seizures Model 

 

Repeated application of a sub convulsive electrical stimulus 

causes seizure activity to gradually intensify, culminating in a 

generalized seizure in kindling. The resulting change is stable and 

long-lasting. Immobility, eye closure, vibrissae twitching, face 

clonus, and head nodding are the five stages of seizures. 3) 

contralateral forelimb clonus, 4) rearing frequently accompanied 

by bilateral forelimb clonus, 5) rearing and falling accompanied 

by generalized clonic convulsions Stages 1 and 2 are complicated 

partial seizures (limbic or temporal lobe), while stages 3 to 5 are 

limbic seizures that progress to generalized motor seizures. 

Kindling is a time-consuming operation that necessitates the 

placement of stimulation and recording electrodes on a long-term 

basis, as well as ongoing electrical stimulation25-26.  

 

The benefit of this model is that it allows the efficacy of a 

treatment to be tested both against the gradual process leading to 

epileptogenesis and against the fully ignited state. Many 

antiepileptic medicines are effective in preventing the 

development of kindled seizures, whereas others are effective in 

preventing the development of kindled seizures. Kindled seizures 

and the development of the kindling process are thus blocked by 

phenobarbital, diazepam, and valproate. Once kindling has 

occurred, phenytoin and carbamazepine inhibit seizures, but they 

do not reliably block kindling establishment27-28. (Figure 4) 

 

Effect on leptazole -induced convulsions in rats 

 

One hour after receiving the extracts and the usual medication 

diazepam (2 mg/kg, i.p. ), all of the animals were injected 

subcutaneously with 80 mg/kg of leptazolein into the loose skin 

over their backs. The animals were kept under observation for 

another hour, and the presence or absence of convulsions was 

noted. The convulsion threshold was defined as the occurrence of 

face or forelimb clonuses lasting more than 5 seconds. 
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Picrotoxin-induced convulsions Model 

 

The test chemical or the standard (e.g. 10 mg/kg diazepam i.p.) 

are given orally or intravenously to groups of 10 mice of either 

sex weighing between 18 and 22 g. The animals are injected with 

3.5 mg/kg s.c. picrotoxin 30 minutes after i.p. treatment or 60 

minutes after oral administration, and are observed for the 

following symptoms for the next 30 minutes: clonic seizures, 

tonic seizures, and death29. 

 

Isoniazid-induced convulsion 

 

The test substance (e.g. diazepam 10 mg/kg i.p.) or the standard 

(e.g. diazepam 10 mg/kg i.p.) is administered orally or 

intraperitoneally to 10 mice of either sex weighing 18 to 22 g. 

Only the vehicle is sent to the controls. The animals are injected 

with a subcutaneous dose of 300 mg/kg isoniazid 30 minutes after 

i.p. or 60 minutes after p.o. treatment (isonicotinic acid 

hydrazide). Clonic seizures, tonic seizures, and death occur in 

rapid succession during the next 120 minutes30. 

 

Subcutaneous pentylene tetrazole (PTZ) method 

 

Compounds that enhance the seizure threshold are identified by 

this model. Drugs that are effective against this seizure model 

could be used to treat non-convulsive seizures. The subcutaneous 

convulsive dose of PTZ for mice is 85 mg/kg, while for rats it is 

70 mg/kg (produces clonic seizure in 97 percent of animals lasting 

at least 5 seconds, i.e. CD97). The animals are kept under 

observation for 30 minutes. The animal exhibits altered 

behavioural responses such as vibrissae twitching, myoclonic jerk 

with associated vocalization and Straub’s tail, loss of righting 

reflex but regaining it after a few seconds, freezing movements, 

increased breathing, jumping and progressing to clonic seizure, 

and finally hind limb tonic extensor phase. The absence of clonic 

phase during the observation period shows that the substance 

under study raises the seizure threshold31-32. 

 

Penicillin model of absence  seizure 

 

After 1 hour of injectable administration of penicillin G (3 lac 

unit/kg) to a cat, epileptic activity commences, characterized by 

repetitive halted activity, myoclonus, staring, and occasionally 

escalating to GTCS. As seen in human absence seizure 13, this 

model depicts spike wave discharge with normal background 

activity on the EEG. The injection of pentylenetetrazol (85 

mg/kg) subcutaneously is another means of generating absence 

seizures. Spike wave discharges can be seen on the EEG of the 

treated animals. Drugs that prevent PTZ-induced seizures are also 

beneficial in treating human absence seizures 24,33 

 

Pentylenetetrazol (PTZ) Induced Convulsions in Mice 

 

Swiss albino mice of either sex, weighing 20–30 g, were 

randomly selected and marked to allow individual identification, 

then divided into four groups, each with six animals. Control: 

PTZ (80mg/kg, i.p.) + distilled water (5 ml/kg, p.o.) Diazepam (4 

mg/kg, i.p.) + PTZ (80 mg/kg, i.p.) are the standard doses. PTZ 

(80 mg/kg, i.p.) + Ethanolic leaves extract (100 mg/kg, p.o.) Test 

II: PTZ (80 mg/kg, i.p.) + Ethanolic leaves extract (200 mg/kg, 

p.o.) For a period of seven days, the test medication was 

continually given. PTZ was used to cause convulsions on the 

seventh day. Prior to the experiment, all animal groups were given 

PTZ injections after receiving the appropriate therapy34.  

(Figure 5) 

 

 

 

Lithium pilocarpine  model 

 

Pilocarpine, at a dose of 350 mg/kg i.p., was used to cause 

epilepticus. Atropine 1 mg/kg i.p. was given 30 minutes before 

pilocarpine to diminish the cholinergic effects of pilocarpine in 

the peripheral nervous system. The standard was diazepam (5 

mg/kg). The test medication was given orally 1 hour before the 

pilocarpine nitrate injection35. 15 Every 15 minutes until 90 

minutes, and then every 30 minutes until 180 minutes, the severity 

of status epilepticus was assessed using the following scoring 

system: Stage 0 - no response, Stage 1-fictive scratching, Stage 

2-tremor, Stage 3-head nodding, Stage 4-Forelimb clonus, and 

Stage 5-Rearing and falling back. The alternate strategy of 

lithium pre-treatment followed by one or multiple low doses of 

pilocarpine causes status epilepticus (SE) and chronic epilepsy, 

according to the researchers. 

 

The alternate strategy of lithium pre-treatment followed by one or 

multiple low doses of pilocarpine causes status epilepticus (SE) 

and chronic epilepsy with considerably lower fatality rates than a 

single dosage of pilocarpine, according to the researchers. Pre-

treatment with lithium chloride (3mEq/ kg, i.p.) between 2 and 24 

hours before pilocarpine injection potentiates the drug's 

epileptogenic effect and allows for a 10-fold reduction in the drug 

dose 36. (Figure 6) 

 

Bicuculline model 

 

Bicuculline has been used in both a focused and systemic manner. 

After topical treatment in the sensorimotor cortex of rats, it was 

utilized to elicit acute simple focal epilepsy. Researchers 

established another model involving biculline and the production 

of chronic simple partial seizures. Systemic focal epileptogenesis 

is a paradigm that combines the characteristics of focal and 

generalized epilepsy. In this model, rats get radiation to a small 

portion of their cerebrum (0.25 ml). When the blood-brain barrier 

is injected systemically three to six months later, an epileptic 

focus is induced with repeated EEG spikes and focal seizures that 

last for several weeks following a single injection. Phenytoin, 

phenobarbital, chlordiazepoxide, and valproic acid all reduce the 

surges. Bicuculline is thought to have an epileptogenic impact via 

interfering with GABA ergic neurotransmission by competing for 

binding sites with GABA (2). 

 

Kainic acid (KA) model 

 

Wet dog shakes, generalized tonic-clonic convulsions, teeth 

chattering, and changed motor activity, including an initial 

hypoactivity that converts to a hyperactivity at a later stage, are 

all symptoms of systemic injection of the appropriate amount of 

KA. As early as 3 hours after injection, neurodegeneration begins 

in the pyramidal layer of the CA3 area of the hippocampus and in 

the piriform cortex. At this time, there is a positive link between 

the KA dose and the severity of the acute neurochemical 

alterations in all brain regions studied, including increases in 3, 

4-dihydroxyphenylacetic acid and decreases in noradrenaline 

levels. Neuronal somata deteriorate and vanish in places such the 

olfactory cortex and sections of the amygdaloid complex, 

hippocampal formation, thalamus, and neocortex between 13 

hours and 2 weeks36. 

 

In 1978, scientists discovered that KA, a cyclic analogue of L-

glutamate that acts as an agonist for the ionotropic KA receptors 

(KARs), damages hippocampus pyramidal neurons. However, 

numerous researchers initially suggested the use of KA as a model 

for epilepsy when they performed a unilateral intra-amygdaloid 

injection of KA in non-anaesthetized non-paralyzed rats and 

observed focal seizures evolving into SE as the dosage was raised. 
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In addition, the CA3 field of the hippocampus showed neuronal 

loss and gliosis. These and other studies suggested that KA may 

be used to simulate TLE in animals. When KA is injected, its 

corresponding receptors are activated37. (Figure 7) 

 

Strychnine Induced Convulsion 

 

Strychnine is a powerful convulsant and a selective inhibitor of 

glycine receptors. Its convulsant action is assumed to be caused 

by inhibiting the motor neurons feedback inhibition. Other effects 

of strychnine have been discovered, including the suppression of 

noradrenaline and acetylcholine release from the brain. Although 

there is conflicting evidence, catecholamines have been linked to 

seizures. The noradrenergic system has been found to produce 

convulsant or anticonvulsant effects when stimulated or 

inhibited38. Control (0.9 percent Saline), standard (Diazepam 5 

mg/kg, i.p.), group III (EERA 200 mg/kg, p.o.) and group IV 

(EERA 400 mg/kg, p.o.) albino mice of either sex were divided 

into four groups, each with six animals: control (0.9 percent 

Saline), standard (Diazepam 5 mg/kg, i.p.), group III (EERA 200 

mg/kg, p EERA was given to groups III and IV once a day for 

three weeks. Strychnine nitrate (2mg/kg, i.p.) was given on the 

21st day, 30 minutes after i.p. injection of Diazepam and 60 

minutes after oral delivery of extract. During a one-hour period, 

the time between the onset of tonic extensor convulsion and death 

was recorded34. 

 

Hippocampal slices Model 

 

Chronic animal models of epilepsy can be used to obtain 

hippocampal slices. Models of TLE and epileptogenesis, 

including as the kindling, kainite, and pilocarpine models, have 

benefited from the slice's technical advantages in investigating 

detailed cellular and synaptic events. The chronic phase of 

epilepsy, during which the animals exhibit spontaneous recurrent 

seizures (epilepsy), and the latent period, the time between the 

initial injury and the first spontaneous seizure, have both been 

studied following an epileptogenic event or stimulus 

(epileptogenesis). During epileptogenesis and the chronic phase 

of epileptogenesis, the hippocampus undergoes significant 

changes. (Figure 8, 9) 

 

The fact that these animals are epileptic is an evident advantage 

of examining hippocampal slices from chronic animal models 

(rather than researching epileptiform phenomena in "normal" 

tissue). This fact permits the researcher to look at variables that 

are linked to epilepsy or may be causally related to ictogenesis. 

Unfortunately, as previously stated, interictal-like or ictal-like 

discharges have not been observed in epileptic animal slices 

under physiologic settings. Slices from the ventral hippocampus, 

which can record spontaneous waves, have yet to be tested. 

Another application of these slices is to look at the specifics of 

hippocampal circuitry abnormalities linked to epilepsy. The slice 

preparation enables for high data generating throughput, but it is 

confined to precise examination of single cells (with intracellular 

recordings) or the gross behaviour of small groups of neurons 

(with extracellular recordings). Recent technological 

advancements, notably in imaging approaches, have made it 

possible to investigate network features during slice preparation. 

With high-speed two-photon calcium imaging devices, for 

example, it is possible to concurrently record the activity of 

hundreds of neurons and then record from individual neurons to 

gain access to more microscopic features39-41. 

 

Photic seizures Model 

 

In 60-80 percent of adolescent baboons, myoclonic responses to 

intermittent photic stimulation occur42. However, this reaction to 

antiepileptic medications is only partially comparable to human 

disorders. Domestic fowls are similarly susceptible to photo-

induced seizures. Benzodiazepines, barbiturates, and valproic 

acid, which are used to treat clinical tonic-clonic and myoclonic 

epilepsy, can prevent these seizures. 

 

Phenytoin, carbamazepine, and trimethadione have less 

beneficial therapeutic effects. These seizure models have a 

number of flaws, including:  

a) uncertain predictive validity against a specific clinical subtype 

of seizures. 

 b) baboons' high prime and maintenance costs restrict their 

utility28, 43. 

 

Gama-hydroxybutyrate (GHB) model 

 

GHB is a naturally occurring metabolite of gamma-aminobutyric 

acid (GABA) that causes electroencephalographic and 

behavioural abnormalities in animals that resemble generalized 

absence seizures44-46. GHB-treated animals, including monkeys 

and rats, show a characteristic halt in activity with gazing and 

bilaterally synchronous spike wave discharges. Anti-absence 

medications like ethosuximide specifically prevent this activity, 

while phenytoin makes it worse47. Gamma butyrolactone (GBL), 

a GHB prodrug that is rapidly transformed to GHB after 

parenteral injection, has similarly been demonstrated to cause 

spike and wave discharges 48 . The EEG and behavioural 

alterations are similar to those caused by GHB, but with a faster 

beginning of action and a more predictable dose response. GBL 

has no such impact on its own. After repeated daily injections of 

GBL, rats develop spontaneously occurring recurrent 

electroclinical seizures, according to a recent study49. The cause 

of epileptiform activity is unknown, but it is possible that it 

involves some type of neurotransmitter system or, more 

specifically, suppression of GABAergic neurotransmission50-51. 

 

CONCLUSION 

 

To summarize, the pharmaceutical industry typically employs a 

mechanism-specific approach as a major screening tool, while 

mechanism-independent models are utilized to validate various 

mechanism-based hypotheses. Secondary examination is carried 

out using seizure type models. Different epilepsy models 

significantly advanced our understanding of epileptogenesis and 

ictogenesis. The models outlined above can be used to find and 

define new chemical entities that can be employed to treat 

epilepsy. Electrical stimulation regimens, neuro-chemical agents, 

hypoxic or thermal insults, traumatic traumas, rodent strains, and 

optogenetics with audiogenic or idiopathic-induced seizures are 

among the instruments used in animal models of epilepsy. An 

essential factor to consider is that Screening models do not predict 

efficacy in treating human epilepsy and simply present options 

for which drugs should be explored. The ultimate test for proving 

anticonvulsant activity is the use of patients to validate the 

findings of Screening  models. 
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